How do you find the product #b(b^2-12b+1)#?

1 Answer
Jan 8, 2017

Multiply each term within the parenthesis by #color(red)(b)# See full process below:

Explanation:

Multiply each term within the parenthesis by #color(red)(b)#:

#(color(red)(b) xx b^2) - (color(red)(b) xx 12b) + (color(red)(b) xx 1)#

Now we can use these two rules for exponents to finalize the solution:

#x^color(red)(1) = x#

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a)+color(blue)(b))#

#(color(red)(b^1) xx b^2) - (color(red)(b^1) xx 12b^1) + (color(red)(b^1) xx 1)#

#b^(1+2) - 12b^(1+1) + b^1#

#b^3 - 12b^2 + b#