How do you find the quotient of #(4h^3+6h^2-3)div(2h+3)# using long division?

1 Answer
Dec 31, 2017

Answer:

#(4h^3 +6h^2 - 3)div(2h+3) =2h^2 " remainder " -3#

Explanation:

Remember to leave a space for the #h# term in the dividend.

Divide: # 4h^3 div 2h = 2h^2#

#color(white)(mmmmmm.m)2h^2#
#2h+3 |bar(4h^3 +6h^2 +" " - 3#

Multiply #2h^2# by both terms at the side (in the divisor)

#color(white)(mmmmmm.m)2h^2#
#2h+3 |bar(4h^3 +6h^2 +" " - 3#
#color(white)(xxxxxx)ul(4h^3 +6h^2)" "larr" "# subtract
#color(white)(xxxxxx)0h^3 +0h^2color(white)(mmmm)-3" "larr# remainder

#(4h^3 +6h^2 - 3)div(2h+3) =2h^2 " remainder " -3#