How do you find the quotient of #(c^3-27)div(c-3)#?
2 Answers
Mar 28, 2017
Explanation:
we use a long division to solve it.
.................................
.................................
...............................
the answer is
Mar 28, 2017
Explanation:
The numerator is a
#color(blue)"difference of cubes"# and in general is factorised as shown.
#color(red)(bar(ul(|color(white)(2/2)color(black)(a^3-b^3=(a-b)(a^2+ab+b^2))color(white)(2/2)|)))#
#c^3-27=(c)^3-(3)^3rArra=c" and " b=3#
#rArrc^3-27=(c-3)(c^2+3c+9)#
#rArr(c^3-27)/(c-3)=(cancel((c-3)^1)(c^2+3c+9))/(cancel((c-3)^1)#
#=c^2+3c+9larrcolor(red)" quotient"#