# How do you find the quotient of c^5/2divc^3/(6d^2)?

Aug 31, 2017

See a solution process below:

#### Explanation:

We can rewrite the expression using this rule for dividing fractions:

$\frac{\frac{\textcolor{red}{a}}{\textcolor{b l u e}{b}}}{\frac{\textcolor{g r e e n}{c}}{\textcolor{p u r p \le}{d}}} = \frac{\textcolor{red}{a} \times \textcolor{p u r p \le}{d}}{\textcolor{b l u e}{b} \times \textcolor{g r e e n}{c}}$

${c}^{5} / 2 \div {c}^{3} / \left(c {d}^{2}\right) \implies \frac{\frac{\textcolor{red}{{c}^{5}}}{\textcolor{b l u e}{2}}}{\frac{\textcolor{g r e e n}{{c}^{3}}}{\textcolor{p u r p \le}{6 {d}^{2}}}} \implies \frac{\textcolor{red}{{c}^{5}} \times \textcolor{p u r p \le}{6 {d}^{2}}}{\textcolor{b l u e}{2} \times \textcolor{g r e e n}{{c}^{3}}} \implies \frac{\cancel{\textcolor{red}{{c}^{5}}} {c}^{2} \times \textcolor{b l a c k}{\cancel{\textcolor{p u r p \le}{\textcolor{p u r p \le}{6}}} 3 {d}^{2}}}{\cancel{\textcolor{b l u e}{2}} \times \cancel{\textcolor{g r e e n}{{c}^{3}}}} \implies$

$3 {c}^{2} {d}^{2}$