# How do you find the quotient of four-ninths divided by eight?

##### 1 Answer
Mar 7, 2018

See a solution process below;

#### Explanation:

We can write this problem as:

$\frac{\frac{4}{9}}{8}$ which can be rewritten as: $\frac{\frac{4}{9}}{\frac{8}{1}}$

We can then use this rule for dividing fractions to evaluate the expression:

$\frac{\frac{\textcolor{red}{a}}{\textcolor{b l u e}{b}}}{\frac{\textcolor{g r e e n}{c}}{\textcolor{p u r p \le}{d}}} = \frac{\textcolor{red}{a} \times \textcolor{p u r p \le}{d}}{\textcolor{b l u e}{b} \times \textcolor{g r e e n}{c}}$

$\frac{\frac{\textcolor{red}{4}}{\textcolor{b l u e}{9}}}{\frac{\textcolor{g r e e n}{8}}{\textcolor{p u r p \le}{1}}} \implies$

$\frac{\textcolor{red}{4} \times \textcolor{p u r p \le}{1}}{\textcolor{b l u e}{9} \times \textcolor{g r e e n}{8}} \implies$

$\frac{\cancel{\textcolor{red}{4}} \textcolor{red}{1} \times \textcolor{p u r p \le}{1}}{\textcolor{b l u e}{9} \times \cancel{\textcolor{g r e e n}{8}} \textcolor{g r e e n}{2}} \implies$

$\frac{\textcolor{red}{1} \times \textcolor{p u r p \le}{1}}{\textcolor{b l u e}{9} \times \textcolor{g r e e n}{2}} \implies$

$\frac{1}{18}$