How do you find the radius of convergence #Sigma (n!)/n^n x^n# from #n=[1,oo)#?

1 Answer
Jun 7, 2017

The radius of convergence is #R = e#

Explanation:

Using the ratio test:

#abs (a_(n+1)/a_n) = abs ( ( ( (n+1)! x^(n+1))/(n+1)^(n+1)) /( ( n!x^n)/n^n))#

#abs (a_(n+1)/a_n) = ((n+1)!)/(n!) xx n^n/(n+1)^(n+1) xx abs (x^(n+1)/x^n)#

#abs (a_(n+1)/a_n) = (n+1) xx 1/(n+1) (n/(n+1))^n xx abs (x)#

#abs (a_(n+1)/a_n) =abs (x)/((n+1)/n)^n #

#abs (a_(n+1)/a_n) =abs (x)/(1+1/n)^n #

So:

#lim_(n->oo) abs (a_(n+1)/a_n) = absx lim_(n->oo) 1/(1+1/n)^n = absx/e#

So the radius of convergence is #R = e# which means that the series is absolutely convergent for #absx < e#