How do you find the real solutions of the polynomial #x^3+6=2x^2+5x#?

1 Answer
Nov 16, 2017

Answer:

Solution: # x=1 ,x=3 ,x=-2#

Explanation:

#x^3+6=2x^2+5x or x^3+6-2x^2-5x =0# or

#x^3-2x^2-5x +6 =0 or x^3-x^2-x^2+x-6x+6 =0# or

#x^2(x-1)-x(x-1)-6(x-1) =0# or

#(x-1)(x^2-x-6)=0 or (x-1) ( x^2-3x+2x-6)=0# or

# (x-1) { x(x-3)+2(x-3)}=0# or

# (x-1) {(x-3)(x+2)}=0# or

# (x-1)(x-3)(x+2)=0#

#x-1=0 :. x=1 or x-3=0 :.x=3# or

#x+2=0:. x =-2 #

Solution: # x=1 ,x=3 ,x=-2# [Ans]