#{(x=rcos theta),(y=rsin theta):}# so
#sqrt(x^2+y^2)=1/(4-x/sqrt(x^2+y^2))# or
#sqrt(x^2+y^2)=sqrt(x^2+y^2)/(4 sqrt(x^2+y^2)-x)# or
#4 sqrt(x^2+y^2)-x = 1# or
#sqrt(x^2+y^2) = (x+1)/4# Finally
#x^2+y^2=((x+1)/4)^2# which is the equation of an ellipse.