How do you find the roots of #y=2x^2 – 9x + 55# using the quadratic formula?

1 Answer

#x_1=(9+sqrt359i)/4=2.25+4.73682i#

#x_2=(9-sqrt359i)/4=2.25-4.73682i#

Explanation:

From the given equation #y=2x^2-9x+55#

We set #y=0#
Let #a=2# and #b=-9# and #c=55#

Quadratic Formula:
#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(--9+-sqrt((-9)^2-4(2)(55)))/(2(2))#

#x=(+9+-sqrt(81-440))/(4)#

#x=(+9+-sqrt(-359))/(4)#

#x_1=(9+sqrt359i)/4=2.25+4.73682i#

#x_2=(9-sqrt359i)/4=2.25-4.73682i#

God bless....I hope the explanation is useful.