The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(-12)# for #color(red)(a)#
#color(blue)(-2)# for #color(blue)(b)#
#color(green)(-12)# for #color(green)(c)# gives:
#x = (-color(blue)(-2) +- sqrt(color(blue)((-2))^2 - (4 * color(red)(-12) * color(green)(-12))))/(2 * color(red)(-12))#
#x = (color(blue)(2) +- sqrt(color(blue)(4 - 576)))/-24#
#x = -(2 +- sqrt(-572))/24#
#x = -(2 +- sqrt(4 * -143))/24#
#x = -(2 +- sqrt(4)sqrt(-143))/24#
#x = -(2 +- 2sqrt(-143))/24#
#x = -(1 +- 1sqrt(-143))/12#
#x = -(1 +- sqrt(-143))/12#