How do you find the roots, real and imaginary, of #y= 12x^2 + 35x + 72 # using the quadratic formula?
1 Answer
Feb 13, 2018
Explanation:
The equation:
#y = 12x^2+35x+72#
is a quadratic in standard form:
#y = ax^2+bx+c#
with
It has zeros given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-(color(blue)(35))+-sqrt((color(blue)(35))^2-4(color(blue)(12))(color(blue)(72))))/(2(color(blue)(12)))#
#color(white)(x) = (-35+-sqrt(1225-3456))/24#
#color(white)(x) = (-35+-sqrt(-2231))/24#
#color(white)(x) = -35/24+-sqrt(2231)/24i#
Note that