How do you find the roots, real and imaginary, of #y=2(x+3)^2-(x-3)^2 # using the quadratic formula?

1 Answer
Dec 29, 2015

#y=2(x+3)^2-(x-3)^2#
#implies y=2(x^2+6x+9)-(x^2-6x+9)#
#implies y=2x^2+12x+18-x^2+6x-9#
#implies y=x^2+18x+9#
For finding roots ## becomes #0#. #implies x^2+18x+9=0#

The quadratic formula is
If #ax^2+bx+c=0# then #x=(-b+-sqrt(b^2-4ac))/(2a)#
Here #a=1# #b=18# and #c=9#

#implies x=(-18+-sqrt(18^2-4*1*9))/(2*1)#

#implies x=(-18+-sqrt(324-36))/(2)#

#implies x=(-18+-sqrt(324-36))/(2)#

#implies x=(-18+-sqrt(288))/(2)#

#implies x=(-18+-sqrt(288))/(2)#

#implies x=(-18+-12sqrt(2))/(2)#

#implies x=(2(-9+-6sqrt(2)))/(2)#

#implies x=(-9+-6sqrt(2))#