How do you find the roots, real and imaginary, of #y= 3x^2 - 9x +26 - (x-5)^2 # using the quadratic formula?
1 Answer
Dec 24, 2017
Explanation:
#"expand "(2x-5)^2" using FOIL and arrange in "color(blue)"standard form"#
#•color(white)(x)ax^2+bx+c color(white)(x);a!=0#
#"using the "color(blue)"quadratic formula"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(x=(-b+-sqrt(b^2-4ac))/(2a))color(white)(2/2)|)))#
#y=3x^2-9x+26-(x^2-10x+25)#
#color(white)(y)=3x^2-9x+26-x^2+10x-25#
#color(white)(y)=2x^2+x+1#
#"with "a=2,b=1,c=1#
#x=(-1+-sqrt(1-8))/2#
#color(white)(x)=(-1+-sqrt7i)/2#
#rArrx=-1/2+-1/2sqrt7ilarrcolor(red)"complex roots"#