To find the roots of the equation set #y# equal to #0# and solve for #x#.
#-x^2 - 12x + 4 = 0#
Now, we can use the quadratic equation to solve this problem:
The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(-1)# for #color(red)(a)#
#color(blue)(-12)# for #color(blue)(b)#
#color(green)(4)# for #color(green)(c)# gives:
#x = (-color(blue)((-12)) +- sqrt(color(blue)((-12))^2 - (4 * color(red)(-1) * color(green)(4))))/(2 * color(red)(-1))#
#x = (12 +- sqrt(144 - (-16)))/(-2)#
#x = (12)/-2 +- (sqrt(144 + 16))/(-2)#
#x = -6 +- (sqrt(160))/(-2)#
#x = -6 - (sqrt(16 * 10))/(-2)# and #x = -6 + (sqrt(16 * 10))/(-2)#
#x = -6 - (sqrt(16)sqrt(10))/(-2)# and #x = -6 + (sqrt(16)sqrt(10))/(-2)#
#x = -6 - (4sqrt(10))/(-2)# and #x = -6 + (4sqrt(10))/(-2)#
#x = -6 - (-2sqrt(10))# and #x = -6 + (-2sqrt(10))#
#x = -6 + 2sqrt(10)# and #x = -6 - 2sqrt(10)#