How do you find the roots, real and imaginary, of #y= x^2 + 4x - 3 # using the quadratic formula?
1 Answer
Feb 29, 2016
See explanation...
Explanation:
This has zeros given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(-4+-sqrt((-4)^2-(4*1*(-3))))/(2*1)#
#=(-4+-sqrt(16+12))/2#
#=(-4+-sqrt(28))/2#
#=(-4+-sqrt(2^2*7))/2#
#=(-4+-2sqrt(7))/2#
#=-2+-sqrt(7)#
Alternative Method
The difference of squares identity can be written:
#a^2-b^2=(a-b)(a+b)#
Complete the square and use this with
#x^2+4x-3#
#=x^2+4x+4-7#
#=(x+2)^2-(sqrt(7))^2#
#=((x+2)-sqrt(7))((x+2)+sqrt(7))#
#=(x+2-sqrt(7))(x+2+sqrt(7))#
Hence zeros: