How do you find the second derivative of #f(x)=ln (x^2+2)#?

1 Answer
Oct 11, 2016

# f''(x) = ( 4 - 2x^2 ) / (x^2+2)^2#

Explanation:

# f(x)=ln(x^2+2) #

Using the chain rule we have:
# f'(x)=1/(x^2+2) *(2x)#
# :. f'(x)=(2x)/(x^2+2) #

To find the second derivative we now need to use the product rule. Remember:
# d/dx(u/v)=(v(du)/dx-u(dv)/dx)/v^2 #; so

# f''(x) = ( (x^2+2)(2) - (2x)(2x) ) / (x^2+2)^2#
# :. f''(x) = ( 2x^2+4 - 4x^2 ) / (x^2+2)^2#
# :. f''(x) = ( 4 - 2x^2 ) / (x^2+2)^2#