How do you find the six trigonometric functions of #(7pi)/6# degrees? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. May 7, 2015 Trig unit circle: #sin ((7pi)/6) = sin (pi/6 + pi) = -sin (pi/6) = -1/2 # (trig table) #cos ((7pi)/6) = cos (pi/6 + pi) = - cos pi/6 = -(sqr3)/2# #tan ((7pi)/6) = (1/2).(2/(sqr3)) = 1/(sqr3) = (sqr3)/3# #cot ((7pi)/6) = sqr3# #sec (7pi/6) = -2/(sqr3) = (-2sqr3)/3# #csc (pi/6) = -2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 23263 views around the world You can reuse this answer Creative Commons License