# How do you find the slope of (-2,3) and (3,2)?

Apr 8, 2015
• color(green)(Slope= (Rise)/(Run)

The $R i s e$ is the Difference of the Y coordinates of any two points on the line
And the $R u n$ is the Difference of the X coordinates of those two points

• If the coordinates of the points are $\left({x}_{1} , {y}_{1}\right) \mathmr{and} \left({x}_{2} , {y}_{2}\right)$, then $\left[S l o p e\right] \left(h \texttt{p} : / s o c r a t i c . \mathmr{and} \frac{g}{a} l \ge b r \frac{a}{g} r a p h s - o f - l \in e a r - e q u a t i o n s - \mathmr{and} - f u n c t i o n \frac{s}{s} l o p e\right) = \frac{{y}_{2} - {y}_{1}}{{x}_{2} - {x}_{1}}$
Here, the coordinates are $\left(- 2 , 3\right)$ and $\left(3 , 2\right)$

$S l o p e = \frac{2 - 3}{3 - \left(- 2\right)} = \frac{- 1}{5} = - \frac{1}{5}$

The slope of the line passing through points $\left(- 2 , 3\right)$ and $\left(3 , 2\right)$ is color(green)(-1/5

• The graph of the line passing through $\left(- 2 , 3\right)$ and $\left(3 , 2\right)$ will look like this:

graph{y=(-x/5)+(13/5) [-10, 10, -5, 5]}