# How do you find the slope of the line passing through the points (14,6) and (9,1)?

Jun 30, 2016

slope = 1

#### Explanation:

To find the slope (m ) of a line passing through 2 given coordinate points we can use the $\textcolor{b l u e}{\text{gradient formula}}$

$\textcolor{red}{| \overline{\underline{\textcolor{w h i t e}{\frac{a}{a}} \textcolor{b l a c k}{m = \frac{{y}_{2} - {y}_{1}}{{x}_{2} - {x}_{1}}} \textcolor{w h i t e}{\frac{a}{a}} |}}}$
where $\left({x}_{1} , {y}_{1}\right) \text{ and " (x_2,y_2)" are 2 points}$

Here the 2 points are (14 ,6) and (9 ,1)

let $\left({x}_{1} , {y}_{1}\right) = \left(14 , 6\right) \text{ and } \left({x}_{2} , {y}_{2}\right) = \left(9 , 1\right)$

$\rightarrow m = \frac{1 - 6}{9 - 14} = \frac{- 5}{- 5} = 1$

We will obtain the same answer if we 'swap' the points.

let $\left({x}_{1} , {y}_{1}\right) = \left(9 , 1\right) \text{ and } \left({x}_{2} , {y}_{2}\right) = \left(14 , 6\right)$

$\Rightarrow m = \frac{6 - 1}{14 - 9} = \frac{5}{5} = 1$