How do you find the solution to the quadratic equation #2x^2 + 7 = 3x#?

1 Answer
Jun 18, 2018

Answer:

#color(maroon)(x_+ = (3 + i sqrt(47)) / 4, x_- = (3 - i sqrt(47))/4#

Explanation:

#2x^2 + 7 = 3x#

#2x^2 - 3x + 7 = 0#

http://www.biology.arizona.edu/biomath/tutorials/quadratic/roots.html

#a = 2, b = -3, c = 7#

#x = (-(-3) +- sqrt((-3)^2 - (4 * 2 * 7)))/(2 * 2)#

#x = (3 +- sqrt(9 - 56) ) / 4#

#x = (3 +- sqrt(-47)) / 4#

#color(maroon)(x_+ = (3 + i sqrt(47)) / 4, x_- = (3 - i sqrt(47))/4#