How do you find the sum of all solutions of #cosxcos(x+pi/3)cos(pi/3-x)=1/4#. if #x# is in #[0, 6pi]#?

1 Answer
Mar 11, 2018

Sum of all solutions is #30pi#.

Explanation:

#cosxcos(x+pi/3)cos(pi/3-x)=1/4# can be written as

#4cosxcos(x+pi/3)cos(pi/3-x)=1#

or #2cosx[2cos(x+pi/3)cos(pi/3-x)]=1#

or #2cosx[cos(x+pi/3+pi/3-x)+cos(x+pi/3-pi/3+x)]=1#

or #2cosx[cos((2pi)/3)+cos2x]=1#

or #2cosx[-1/2+2cos^2x-1]=1#

or #4cos^3x-3cosx=1#

or #cos3x=1=cos0#

i.e. #3x=2npi#, where #n# is an integer.

or #x=(2npi)/3#, where #n# is an integer.

and in #[0,6pi]# we will have

#x=[0,color(red)((2pi)/3,(4pi)/3),2pi,color(red)((8pi)/3,(10pi)/3),4pi,color(red)((14pi)/3,(16pi)/3),6pi]#

and their sum is #color(red)(2pi)+2pi+color(red)(6pi)+4pi+color(red)(10pi)+6pi=30pi#