How do you find the sum of the first #13# terms of the geometric sequence: #7, 21, 63, 189, 567, . .#?
1 Answer
Explanation:
The general term of a geometric sequence can be written:
#a_n = a r^(n-1)#
where
Then we find:
#(1-r) sum_(n=1)^N a_n#
#= sum_(n=1)^N a r^(n-1) - r sum_(n=1)^N a r^(n-1)#
#= sum_(n=1)^N a r^(n-1) - sum_(n=2)^(N+1) a r^(n-1)#
#= a + color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - color(red)(cancel(color(black)(sum_(n=2)^N a r^(n-1)))) - a r^N#
#= a - a r^N#
#= a(1 - r^N)#
Dividing both ends by
#sum_(n=1)^N a_n = (a(1-r^N))/(1-r)#
Note in particular that if
#lim_(N->oo) r^N = 0#
and:
#sum_(n=1)^oo a_n = lim_(N->oo) sum_(n=1)^N a_n = lim_(N->oo) (a(1-r^N))/(1-r) = a/(1-r)#
Example
Given:
#7, 21, 63, 189, 567,...#
Note that:
#21/7 = 63/21 = 189/63 = 567/189 = 3#
That is, the sequence (as far as we are given) has a common ratio
So the general term may be written:
#a_n = ar^(n-1) = 7 * 3^(n-1)#
and the sum to
#sum_(n=1)^13 a_n = (a(1-r^N))/(1-r)#
#color(white)(sum_(n=1)^13 a_n) = (color(blue)(7) * (1-color(blue)(3)^color(blue)(13)))/(1-color(blue)(3)) = (7 * (1-1594323))/(1-3) = (-11160254)/(-2) = 5580127#