How do you find the taylor series for #cos x#, #a=pi/3#?

1 Answer
Dec 15, 2016

#cosx = sum_(n=0)^(oo) cos(pi/3+(npi)/2)/(n!)(x-pi/3)^n#

Explanation:

The Taylor series of #f(x)# in #x=x_0# is given by:

#sum_(n=0)^(oo) f^((n))(x_0)/(n!)(x-x_0)^n#

So we must calculate the derivatives of all orders of #cos(x)#.

Now we note that:

#d/(dx)cosx =-sinx =cos(x+pi/2)#

#(d^((2)))/(dx^2)cosx =-cosx =cos(x+pi)#

and in general:

#(d^((n)))/(dx^n)cosx =-cosx =cos(x+(npi)/2)#

which can be proved by mathematical induction.

Thus the Taylor expansion is:

#sum_(n=0)^(oo) cos(pi/3+(npi)/2)/(n!)(x-pi/3)^n#