How do you find the taylor series for ln(1+x)?
1 Answer
Mar 11, 2017
Start with the basic geometric series:
#1/(1-x)=sum_(n=0)^oox^n#
Replacing
#1/(1+x)=sum_(n=0)^oo(-x)^n=sum_(n=0)^oo(-1)^nx^n#
Note that integrating
#int_0^x1/(1+t)dt=sum_(n=0)^oo(-1)^nint_0^xt^ndt#
#ln(1+x)=C+sum_(n=0)^oo(-1)^nx^(n+1)/(n+1)#
Letting
#ln(1+x)=sum_(n=0)^oo(-1)^nx^(n+1)/(n+1)#