How do you find the value of cos 210degrees- csc 300 degrees? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Daniel L. Oct 11, 2015 #cos210-csc300=sqrt(3)/6# Explanation: #cos210-csc300=cos210-1/sin300=cos(180+30)-1/sin(360-60)=# #=-cos30-(1/(-sin60))=-cos30+1/sin60=-sqrt(3)/2+1/(sqrt(3)/2)=# #=-sqrt(3)/2+2/sqrt(3)=(-3+4)/(2sqrt(3))=1/(2sqrt(3))=sqrt(3)/6# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 2316 views around the world You can reuse this answer Creative Commons License