How do you find the value of #sin((5pi)/3)# using the double angle identity?

1 Answer
Jun 21, 2017

#-sqrt3/2#

Explanation:

Use trig table and unit circle:
#sin ((5pi)/3) = sin ((2pi)/3 + pi) = - sin ((2pi)/3) = -sqrt3/2#
Use double angle identity:
#sin 2a = 2sin a.cos a#
#sin ((10pi)/3) = 2sin ((5pi)/3).cos ((5pi)/3)#
#sin ((5pi)/3) = (sin ((10pi)/3))/(2cos ((5pi)/3))#
Because:
#cos ((5pi)/3) = cos ((2pi)/3 + pi) = - cos ((2pi)/3) = 1/2#
#sin ((10pi)/3) = sin (pi/3 + 3pi) = - sin (pi/3) = - sqrt3/2#
Therefore:
#sin ((5pi)/3) = (- sqrt3/2)/1 = - sqrt3/2#