How do you find the x and y intercepts of #2x-6y=-12#?

1 Answer
Apr 15, 2017

See the entire solution process below:

Explanation:

x- intercept)

Set #y# equal to #0# and solve for #x#:

#2x - 6y = -12# becomes:

#2x - (6 * 0) = -12#

#2x - 0 = -12#

#2x = -12#

#(2x)/color(red)(2) = -12/color(red)(2)#

#(color(red)(cancel(color(black)(2)))x)/cancel(color(red)(2)) = -6#

#x = -6#

The x-intercept is #-6# or #(-6, 0)#

y- intercept)

Set #x# equal to #0# and solve for #y#:

#2x - 6y = -12# becomes:

#(2 * 0) - 6y = -12#

#0 - 6y = -12#

#-6y = -12#

#(-6y)/color(red)(-6) = (-12)/color(red)(-6)#

#(color(red)(cancel(color(black)(-6)))y)/cancel(color(red)(-6)) = 2#

#y = 2#

The y-intercept is #2# or #(0, 2)#