x- intercept)
Set #y# equal to #0# and solve for #x#:
#2x - 6y = -12# becomes:
#2x - (6 * 0) = -12#
#2x - 0 = -12#
#2x = -12#
#(2x)/color(red)(2) = -12/color(red)(2)#
#(color(red)(cancel(color(black)(2)))x)/cancel(color(red)(2)) = -6#
#x = -6#
The x-intercept is #-6# or #(-6, 0)#
y- intercept)
Set #x# equal to #0# and solve for #y#:
#2x - 6y = -12# becomes:
#(2 * 0) - 6y = -12#
#0 - 6y = -12#
#-6y = -12#
#(-6y)/color(red)(-6) = (-12)/color(red)(-6)#
#(color(red)(cancel(color(black)(-6)))y)/cancel(color(red)(-6)) = 2#
#y = 2#
The y-intercept is #2# or #(0, 2)#