How do you find the x and y intercepts of #3x-7y+20=0#?

2 Answers

x-intercept: #=a=-20/3#

y-intercept: #=b=20/7#

Explanation:

Given equation of straight line:

#3x-7y+20=0#

#3x-7y=-20#

#\frac{3x}{-20}+\frac{-7y}{-20}=1#

#\frac{x}{-20/3}+\frac{y}{20/7}=1#

Comparing the above equation with the intercept form of the straight line: #x/a+y/b=1# we get

x-intercept: #=a=-20/3#

y-intercept: #=b=20/7#

Jul 10, 2018

#"x-intercept "=-20/3," y-intercept "=20/7#

Explanation:

#"to find the intercepts, that is where the graph crosses"#
#"the x and y axes"#

#• " let x = 0, in the equation for y-intercept"#

#• " let y = 0, in the equation for x-intercept"#

#x=0rArr-7y=-20rArry=20/7larrcolor(red)"y-intercept"#

#y=0rArr3x=-20rArrx=-20/3larrcolor(red)"x-intercept"#