How do you find the x- and y-intercepts of #-6x-2y=3#?

1 Answer
Dec 13, 2016

Answer:

The x-intercept is #x = -1/2# or #(-1/2, 0)#

The y-intercept is #y = -3/2# or #(0, -3/2)#

Explanation:

To find the #x# intercept for this line substitute #0# for #y# and solve for #x#:

#-6x - (2*0) = 3#

#-6x - 0 = 3#

#-6x = 3#

#(-6x)/-6 = 3/-6#

#(cancel(-6)x)/cancel(-6) = -1/2#

#x = -1/2#

To find the #y# intercept for this line substitute #0# for #x# and solve for #y#:

#(-6*0) - 2y = 3#

#0 - 2y = 3#

#-2y = 3#

#(-2y)/-2 = 3/-2#

#(cancel(-2)y)/cancel(-2) = -3/2#

#y = -3/2#