The domain: #[-10,0]#
#f^'(x)=4(2x+3)(x+1)^2+2(2x+3)^2(x+1)#
#f^'(x)=2(2x+3)(x+1)[2(x+1)+2x+3]=2(2x+3)(x+1)(4x+5)#
#2x+3=0quad^^quadx+1=0quad^^quad4x+5=0#
#x=-3/2quad^^quadx=-1quad^^quadx=-5/4#
#x in [-10,-3/2] hArr f^'<0 => #f goes down
#x=-3/2 =># minimum #f(-3/2)=0#
#x in [-3/2,-5/4] hArr f^'>0 => #f goes up
#x=-5/4 =># local maximum
#x in [-5/4,-1] hArr f^'<0 => #f goes down
#x=-1 =># minimum #f(-1)=0#
#x in [-1,0] hArr f^'>0 => #f goes up
Global maximum:
#f(-10)=(-20+3)^2(-10+1)^2=23409#
Cocavity:
#f^'(x)=4(2x+3)(x^2+2x+1)+2(4x^2+12x+9)(x+1)#
#f^'(x)=2(8x^3+30x^2+37x+15)#
#f^''(x)=2(24x^2+60x+37)#
#x_(1,2)=(-b+-sqrt(b^2-4ac))/(2a)=(-60+-sqrt(60^2-4*24*37))/(2*24)#
#x_(1,2)=(-15+-sqrt(3))/(12)#
#x_(1)=-1.394...#
#x_(2)=-1.105...#
#x in [-10,x_1) hArr f^''>0 =># Convex
#x in (x_1,x_2) hArr f^''<0 =># Concave
#x in (x_2,0] hArr f^''>0 =># Convex