How do you find the zeroes for #f(x)=x^5+3x^3-x+6#?
2 Answers
Use a graphing calculator.
Explanation:
Use a graphing calculator.
graph{x^5+3x^3-x+6 [-15.09, 16.95, -5.13, 10.89]}
There's only one zero:
Use Newton's method to find Real root:
#x ~~ -1.178259848#
and Complex roots:
#x ~~ -0.20255440359096+-1.893126314652i#
#x ~~ 0.79168432752598+-0.882050595027i#
Explanation:
#f(x) = x^5+3x^3-x+6#
#f'(x) = 5x^4+9x^2-1#
Starting with a first approximation
#a_(i+1) = a_i - (f(a_i))/(f'(a_i))#
Putting this into a spreadsheet, choosing
#a_0 = -1#
#a_1 = -1.230769231#
#a_2 = -1.181552182#
#a_3 = -1.178273619#
#a_4 = -1.178259848#
#a_5 = -1.178259848#
The same method can be applied to find the
Since my spreadsheet application does not support Complex arithmetic directly, I created columns for
With an initial approximation of
#a_0 = 0+2i#
#a_1 = -0.13953488372093+1.860465116279i#
#a_2 = -0.21027440054555+1.889317276079i#
#a_3 = -0.20248503148821+1.893034069471i#
#a_4 = -0.20255442138413+1.893126325251i#
#a_5 = -0.20255440359096+1.893126314652i#
#a_6 = -0.20255440359096+1.893126314652i#
With an initial approximation of
#a_0 = 1+i#
#a_1 = 0.83921568627451+0.909803921569i#
#a_2 = 0.79458495418768+0.883839764146i#
#a_3 = 0.79169561531938+0.882058297006i#
#a_4 = 0.79168432769581+0.882050595168i#
#a_5 = 0.79168432752598+0.882050595027i#
#a_6 = 0.79168432752598+0.882050595027i#
Note that Complex roots occur in conjugate pairs so the
#-0.20255440359096+-1.893126314652i#
#0.79168432752598+-0.882050595027i#