How do you find the zeroes of #p(x)= x^3+2x^2-9x-8#?
2 Answers
Try rational root theorem, but find there are no rational roots.
Use general cubic formula.
Explanation:
By the rational root theorem any rational roots of
We find:
#p(-4) = -4#
#p(-2) = 10#
#p(-1) = 2#
#p(1) = -14#
#p(2) = -10#
#p(4) = 52#
So the three Real roots of
Here's an algebraic solution using the general cubic formula:
This has resolvents
#Delta_0 = b^2-3ac = 2^2-(3*1*-9) = 4+27 = 31#
#Delta_1 = 2b^3-9abc+27a^2d = (2*2^3)-(9*1*2*-9)+(27*1^2*-8) = 16+162-216 = -38#
#C = root(3)((Delta_1+sqrt(Delta_1^2-4 Delta_0^3))/2)#
#=root(3)((-38+sqrt(38^2-4*31^3))/2)#
#=root(3)(-19+-sqrt(19^2-31^3))#
#=root(3)(-19+-sqrt(361-29791))#
#=root(3)(-19+-sqrt(-29430))#
#=root(3)(-19+-3sqrt(3270) i)#
Then the roots are:
#x_n = -1/(3a)(b+omega^n C+Delta_0/(omega^n C))#
#= -1/3(2+omega^n root(3)(-19+-3sqrt(3270) i)+31/(omega^n root(3)(-19+-3sqrt(3270) i)))#
where
Find the roots numerically using Newton's method.
#x_1 ~~ -3.810821#
#x_2 ~~ -0.803113#
#x_3 ~~ 2.613934#
Explanation:
When seeking a rational root we find:
#p(-4) = -4#
#p(-2) = 10#
#p(-1) = 2#
#p(1) = -14#
#p(2) = -10#
#p(4) = 52#
Hence
#p(x) = x^3+2x^2-9x-8#
#p'(x) = 3x^2+4x-9#
Newton's method starts with an approximation
#a_(i+1) = a_i - (p(a_i))/(p'(a_i))#
#=a_i - (a_i^3+2a_i^2-9a_i-8)/(3a_i^2+4a_i-9)#
To find different roots, start with different approximations.
Putting this formula into a spreadsheet and using initial approximations
#a_0 = -4#
#a_1 = -3.826087#
#a_2 = -3.810933#
#a_3 = -3.810821#
#a_0 = -1#
#a_1 = -0.8#
#a_2 = -0.803113#
#a_0 = 2#
#a_1 = 2.909091#
#a_2 = 2.646363#
#a_3 = 2.613934#