The quadratic formula states:
For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:
#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#
Substituting:
#color(red)(-8)# for #color(red)(a)#
#color(blue)(-1)# for #color(blue)(b)#
#color(green)(-2)# for #color(green)(c)# gives:
#x = (-color(blue)(-1) +- sqrt(color(blue)(-1)^2 - (4 * color(red)(-8) * color(green)(-2))))/(2 * color(red)(-8))#
#x = (1 +- sqrt(1 - (64)))/-16#
#x = (1 +- sqrt(-63))/-16#
Because the square root of a negative number is not a Real Number there are no zeros for this equation.
Graphing this equation shows:
graph{(y+8x^2+x+2)=0 [-20, 20, -15, 5]}