How do you find the zeros of #f(x) = 7x^3 + 4x^2 - 3x + 3#?
1 Answer
Use a substitution to get into the form
Explanation:
When a cubic has one irrational Real zero and two non-Real Complex zeros, I like to solve using Cardano's method.
First, I would like to have a cubic with integer coefficients and no square term. To get there from our
#1323(7x^3+4x^2-3x+3)#
#=9261x^3+5292x^2-3969x+3969#
#=(9261x^3+5292x^2+1008x+64)-(4977x+948)+4853#
#=(21^3x^3+(3*21^2*4)x^2+(3*21*4^2)x+4^3)-((237*21)x+(237*4))+4853#
#=(21x+4)^3-237(21x+4)+4853#
#=t^3-237t+4853#
So we want to solve
Next substitute
#0 = (u+v)^3-237(u+v)+4853#
#=u^3+v^3+(3uv-237)(u+v)+4853#
#=u^3+v^3+3(uv-79)(u+v)+4853#
Add the constraint
#(u^3)^2+4853(u^3)+493039 = 0#
Use the quadratic formula to find:
#u^3 = (-4853+-sqrt(4853^2-4*1*493039))/2#
#=(-4853+-sqrt(21579453))/2#
#=(-4853+-63 sqrt(5437))/2#
Since the derivation was symmetric in
#t_1 = root(3)((-4853+63 sqrt(5437))/2)+root(3)((-4853-63 sqrt(5437))/2)#
and the Complex roots:
#t_2 = omega root(3)((-4853+63 sqrt(5437))/2)+ omega^2 root(3)((-4853-63 sqrt(5437))/2)#
#t_3 = omega^2 root(3)((-4853+63 sqrt(5437))/2)+ omega root(3)((-4853-63 sqrt(5437))/2)#
where
Then
#x_1 = 1/21(-4+ root(3)((-4853+63 sqrt(5437))/2)+root(3)((-4853-63 sqrt(5437))/2))#
#x_2 = 1/21(-4+ omega root(3)((-4853+63 sqrt(5437))/2)+ omega^2 root(3)((-4853-63 sqrt(5437))/2))#
#x_3 = 1/21(-4+ omega^2 root(3)((-4853+63 sqrt(5437))/2)+ omega root(3)((-4853-63 sqrt(5437))/2))#