How do you find the zeros of #x^3-x^2-7x+15=0#?
1 Answer
May 19, 2016
Explanation:
By the rational root theorem, any rational zeros of
So the only possible rational zeros are:
#+-1# ,#+-3# ,#+-5# ,#+-15#
Trying each of these in turn, we find:
#f(-3) = -27-9+21+15 = 0#
So
#x^3-x^2-7x+15 = (x+3)(x^2-4x+5)#
We can factor
#a^2-b^2=(a-b)(a+b)#
with
#x^2-4x+5 = x^2-4x+4+1 = (x-2)^2-i^2 = (x-2-i)(x-2+i)#
Hence zeros:
#x = 2+-i#