How do you find the zeros of #x^5 - 5x^4 - x^3 + x^2 + 4 = 0#?
1 Answer
Zeros:
#x_1 = 1#
#x_2 = -1#
#x_3 = 1/3(5+root(3)(179+12sqrt(114))+root(3)(179-12sqrt(114)))#
and two related Complex zeros.
Explanation:
#x^5-5x^4-x^3+x^2+4 = 0#
First note that the sum of the coefficients is zero.
That is:
#1-5-1+1+4 = 0#
So
#x^5-5x^4-x^3+x^2+4 = (x-1)(x^4-4x^3-5x^2-4x-4)#
The sum of the coefficients of the remaining quartic with signs reversed on terms of odd degree is zero.
That is:
#1+4-5+4-4 = 0#
So
#x^4-4x^3-5x^2-4x-4=(x+1)(x^3-5x^2-4)#
By the rational root theorem, any rational zeros of the remaining cubic are expressible in the form
So the only possible rational zeros are:
#+-1, +-2, +-4#
None of these work, so the cubic only has irrational zeros.
Let:
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 0+0-2000-432+0 = -2432#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3-135x^2-108#
#=(3x-5)^3-75(3x-5)-358#
#=t^3-75t-358#
where
Cardano's method
We want to solve:
#t^3-75t-358=0#
Let
Then:
#u^3+v^3+3(uv-25)(u+v)-358=0#
Add the constraint
#u^3+15625/u^3-358=0#
Multiply through by
#(u^3)^2-358(u^3)+15625=0#
Use the quadratic formula to find:
#u^3=(358+-sqrt((-358)^2-4(1)(15625)))/(2*1)#
#=(-358+-sqrt(128164-62500))/2#
#=(-358+-sqrt(65664))/2#
#=(-358+-24sqrt(114))/2#
#=-119+-12sqrt(114)#
Since this is Real and the derivation is symmetric in
#t_3=root(3)(-119+12sqrt(114))+root(3)(-119-12sqrt(114))#
and related Complex roots:
#t_4=omega root(3)(-119+12sqrt(114))+omega^2 root(3)(-119-12sqrt(114))#
#t_5=omega^2 root(3)(-119+12sqrt(114))+omega root(3)(-119-12sqrt(114))#
where
Now
#x_3 = 1/3(5+root(3)(-119+12sqrt(114))+root(3)(-119-12sqrt(114)))#
#x_4 = 1/3(5+omega root(3)(-119+12sqrt(114))+omega^2 root(3)(-119-12sqrt(114)))#
#x_5 = 1/3(5+omega^2 root(3)(-119+12sqrt(114))+omega root(3)(-119-12sqrt(114)))#