First, we can calculate the discriminant to see how many real/imaginary answers there will be:
#b^2-4ac#
#\rightarrow (-5)^2-4(1)(-3)#
#\rightarrow 25+24#
#\rightarrow 49#
#\therefore# the equation will have #2# real answers. There are no imaginary solutions.
Now we can solve for those answers.
First set the RHS equal to #0#:
#2x^2-5x-3=0#
Now we can just plug the following values into the quadratic formula:
#a=2#
#b=-5#
#c=-3#
#x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}#
#\rightarrow x=\frac{5\pm\sqrt{(-5)^2-4(2)(-3)}}{2(2)}#
#\rightarrow x=\frac{5\pm\sqrt{25+24}}{2}#
#\rightarrow x=\frac{5\pm\sqrt{49}}{2}#
#\rightarrow x=\frac{5\pm7}{2}#
#\rightarrow x=\frac{5+7}{2}\quad,\quad x=\frac{5-7}{2}3#
#\rightarrow x=6\quad, \quad x=-1#