How do you find the zeros, real and imaginary, of #y=3x^2+31x+9# using the quadratic formula?
1 Answer
Jan 6, 2016
Identify an substitute the values of
#x = (-31+-sqrt(853))/6#
Explanation:
This has zeros given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(-31+-sqrt(31^2-(4*3*9)))/(2*3)#
#=(-31+-sqrt(961-108))/6#
#=(-31+-sqrt(853))/6#