How do you find the zeros, real and imaginary, of #y= 3x^2+4x+2 # using the quadratic formula?

1 Answer
Dec 21, 2015

Answer:

Substitute the coefficients into the equation and evaluate.

Explanation:

The quadratic equation is #x=\frac{-b\pm\sqrt{b^2-4ac\ }}{2a}#
In the example a = 3, b = 4 and c = 2

#x = (-4 +- sqrt(4^2 - 4*3*2))/(2*3)#
#x= (-4 +- sqrt(16 - 24))/6#
#x = -4/6 +- sqrt(-8)/6#
#x = -2/3(1 +sqrt(-2))# or #-2/3(1 - sqrt(-2))#

The equation only has imaginary roots. The graph never touches or crosses the x axis.