How do you find the zeros, real and imaginary, of #y=9x^2-7x-3# using the quadratic formula?
1 Answer
May 25, 2018
Explanation:
Given:
#y = 9x^2-7x-3#
Note that this is in standard form:
#y = ax^2+bx+c#
with
It has zeros which we can find using the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (-(color(blue)(-7))+-sqrt((color(blue)(-7))^2-4(color(blue)(9))(color(blue)(-3))))/(2(color(blue)(9)))#
#color(white)(x) = (7+-sqrt(49+108))/(18)#
#color(white)(x) = (7+-sqrt(157))/(18)#
#color(white)(x) = 7/18+-sqrt(157)/18#
Note that