# How do you find the zeros, real and imaginary, of y=-x^2-12x+11 using the quadratic formula?

Jan 8, 2018

See a solution process below:

#### Explanation:

For $\textcolor{red}{a} {x}^{2} + \textcolor{b l u e}{b} x + \textcolor{g r e e n}{c} = 0$, the values of $x$ which are the solutions to the equation are given by:

$x = \frac{- \textcolor{b l u e}{b} \pm \sqrt{{\textcolor{b l u e}{b}}^{2} - \left(4 \textcolor{red}{a} \textcolor{g r e e n}{c}\right)}}{2 \cdot \textcolor{red}{a}}$

Substituting:

$\textcolor{red}{- 1}$ for $\textcolor{red}{a}$

$\textcolor{b l u e}{- 12}$ for $\textcolor{b l u e}{b}$

$\textcolor{g r e e n}{11}$ for $\textcolor{g r e e n}{c}$ gives:

$x = \frac{- \textcolor{b l u e}{- 12} \pm \sqrt{{\textcolor{b l u e}{- 12}}^{2} - \left(4 \cdot \textcolor{red}{- 1} \cdot \textcolor{g r e e n}{11}\right)}}{2 \cdot \textcolor{red}{- 1}}$

$x = \frac{12 \pm \sqrt{144 - \left(- 44\right)}}{- 2}$

$x = \frac{12 \pm \sqrt{144 + 44}}{- 2}$

$x = \frac{12 \pm \sqrt{188}}{- 2}$

$x = \frac{12 \pm \sqrt{4 \times 47}}{- 2}$

$x = \frac{12 \pm \sqrt{4} \sqrt{47}}{- 2}$

$x = \frac{12 \pm 2 \sqrt{47}}{- 2}$

$x = - 6 \pm \sqrt{47}$