How do you find the zeros, real and imaginary, of #y=-x^2-2x+9# using the quadratic formula?

1 Answer
Apr 14, 2017

The Quadratic Formula is very useful in finding the roots of an equation. The formula is:
#(-b+-sqrt(b^2-4*a*c))/(2*a)#
Where #a, b# and #c# come from #a^2x+bx+c#

So, in our equation (#y=-x^2-2x+9#), #color(purple)(a)=color(purple)(-1)#, #color(green)(b)=color(green)(-2)#, and #color(red)(c)=color(red)(9)#

Thus, our equation is:
#(-(color(green)(-2))+-sqrt((color(green)(-2))^2-4*(color(purple)(-1))*(color(red)(9))))/(2*color(purple)(-1))#
#(2+-sqrt(4--36))/(-2)#
#(2+-sqrt40)/-2#
#(2+-2sqrt(10))/-2#
#(cancel(2)(1+-sqrt10))/cancel(-2)#
#1+-sqrt10#

Thus, #x=1+-sqrt10#, which is about #4.162# and #2.162#. Those are the roots of #y=-x^2-2x+9#)