How do you find the zeros, real and imaginary, of #y=x^2+32x+44# using the quadratic formula?
1 Answer
Dec 24, 2015
Substitute the coefficients into the quadratic formula to find:
#x=-16+-2sqrt(53)#
Explanation:
with
This has zeros given by the quadratic formula:
#x = (-b+-sqrt(b^2-4ac))/(2a)#
#=(-32+-sqrt(32^2-(4xx1xx44)))/(2*1)#
#=(-32+-sqrt(1024-176))/2#
#=(-32+-sqrt(848))/2#
#=(-32+-sqrt(4^2*53))/2#
#=(-32+-4sqrt(53))/2#
#=-16+-2sqrt(53)#