How do you find the zeros, real and imaginary, of #y=x^2-5x+8# using the quadratic formula?
1 Answer
Apr 27, 2018
# x = 5/2+sqrt(7)/2i# and# x = 5/2-sqrt(7)/2i#
Explanation:
We have:
# y=x^2-5x+8 #
Using the quadratic formula:
# x = (-b +- sqrt(b^2-4ac))/ (2a) #
We get the the roots of the equation
# x = (-(-5) +- sqrt((-5)^2-4(1)(8)))/ (2(1)) #
# \ \ = (5 +- sqrt(25-32))/ (2) #
# \ \ = (5 +- sqrt(-7))/ (2) #
# \ \ = (5 +- sqrt(7)i)/ (2) #
Leading to the two conjugate roots:
# x = 5/2+sqrt(7)/2i# and# x = 5/2-sqrt(7)/2i#