How do you find the zeros, real and imaginary, of #y= -x^2-6x-4# using the quadratic formula?
1 Answer
Jan 14, 2016
Explanation:
For any quadratic equation
#x=(-b+-sqrt(b^2-4ac))/(2a)#
For the given quadratic equation:
#a=-1#
#b=-6#
#c=-4#
Plug these into the quadratic formula.
#x=(-(-6)+-sqrt((-6)^2-(4xx-1xx-4)))/(2xx-1)#
Which simplifies to be
#x=(6+-sqrt(36-16))/(-2)#
#x=(-6+-sqrt20)/2#
#x=(-6+-2sqrt5)/2#
#x=-3+-sqrt5#