How do you find #u=1/2v-w+2z# given v=<4,-3,5>, w=<2,6,-1> and z=<3,0,4>?
2 Answers
May 19, 2017
Explanation:
As
#=<(1/2xx4-2+2xx3),(1/2(-3)-6+2xx0),(1/2xx5-(-1)+2xx4)>#
#=<6,-15/2,23/2>#
May 19, 2017
Explanation:
#"Notation" < x,y,z > -=((x),(y),(z))# To multiply a vector by a scalar quantity, multiply each component of the vector by the scalar.
#color(red)(a)((x),(y),(z))=((color(red)(a)x),(color(red)(a)y),(color(red)(a)z))# To add/subtract vectors, add/subtract corresponding components of the vectors.
#((x_1),(y_1),(z_1))+-((x_2),(y_2),(z_2))=((x_1+-x_2),(y_1+-y_2),(z_1+-z_2))#
#rArr1/2ulv-ulw+2ulz#
#=1/2((4),(-3),(5))-((2),(6),(-1))+2((3),(0),(4))#
#=((2),(-3/2),(5/2))-((2),(6),(-1))+((6),(0),(8))#
#=((6),(-15/2),(23/2))#