How do you find vertical, horizontal and oblique asymptotes for #(x^3+8) /(x^2+9)#?
1 Answer
May 19, 2016
Explanation:
For all Real values of
So there are no vertical asymptotes.
#(x^3+8)/(x^2+9) = (x^3+9x-9x+8)/(x^2+9)= (x(x^2+9)-9x+8)/(x^2+9)=x+(-9x+8)/(x^2+9)#
Then since the denominator has higher degree than the numerator:
#(-9x+8)/(x^2+9)->0# as#x->+-oo#
Hence:
#(x^3+8)/(x^2+9) = x+(-9x+8)/(x^2+9)#
is asymptotic to
So
#y = x#
graph{(y-(x^3+8)/(x^2+9))(y-x) = 0 [-20, 20, -10, 10]}