How do you give the six trigonometric function values of pi/3?
1 Answer
Aug 6, 2017
Explanation:
#"using the right triangle with angles and sides"#
#pi/2,pi/6,pi/3larrcolor(red)" angles"#
#1,sqrt3,2larrcolor(red)" sides"#
#"in relation to "cos(pi/3)#
#1" is adjacent ",sqrt3" is opposite",2" is hypotenuse"#
#•color(white)(x)cos(pi/3)=1/2#
#•color(white)(x)sec(pi/3)=1/cos(pi/3)=1/(1/2)=2#
#•color(white)(x)sin(pi/3)=sqrt3/2#
#•color(white)(x)csc(pi/3)=1/sin(pi/3)=1/(sqrt3/2)=2/sqrt3#
#•color(white)(x)tan(pi/3)=sin(pi/3)/(cos(pi/3))=(sqrt3/2)/(1/2)=sqrt3#
#•color(white)(x)cot(pi/3)=1/tan(pi/3)=1/sqrt3#