How do you give the six trigonometric function values of pi/3?

1 Answer
Aug 6, 2017

#"see explanation"#

Explanation:

#"using the right triangle with angles and sides"#

#pi/2,pi/6,pi/3larrcolor(red)" angles"#

#1,sqrt3,2larrcolor(red)" sides"#

#"in relation to "cos(pi/3)#

#1" is adjacent ",sqrt3" is opposite",2" is hypotenuse"#

#•color(white)(x)cos(pi/3)=1/2#

#•color(white)(x)sec(pi/3)=1/cos(pi/3)=1/(1/2)=2#

#•color(white)(x)sin(pi/3)=sqrt3/2#

#•color(white)(x)csc(pi/3)=1/sin(pi/3)=1/(sqrt3/2)=2/sqrt3#

#•color(white)(x)tan(pi/3)=sin(pi/3)/(cos(pi/3))=(sqrt3/2)/(1/2)=sqrt3#

#•color(white)(x)cot(pi/3)=1/tan(pi/3)=1/sqrt3#