How do you graph #x^2 + y^2 – 4x + 22y + 61 = 0#?
1 Answer
Mar 11, 2016
This is a circle, centre
Explanation:
#0 = x^2+y^2-4x+22y+61#
#=x^2-4x+4+y^2+22y+121-64#
#=(x-2)^2+(y+11)^2-8^2#
Add
#(x-2)^2+(y+11)^2 = 8^2#
which is (almost) in the standard form:
#(x-h)^2+(y-k)^2 = r^2#
the equation of a circle with centre
graph{(x^2+y^2-4x+22y+61)((x-2)^2+(y+11)^2-0.06) = 0 [-17.8, 22.2, -19.96, 0.04]}