How do you graph #y=-2x-4#?

1 Answer
Oct 27, 2017

See a solution process below:

Explanation:

First, solve for two points which solve the equation and plot these points:

First Point: For #x = 0#

#y = (-2 * 0) - 4#

#y = 0 - 4#

#y = -4# or #(0, -4)#

Second Point: For #x = 2#

#y = (-2 * 2) - 4#

#y = -4 - 4#

#y = -8# or #(2, -8)#

We can next plot the two points on the coordinate plane:

graph{(x^2+(y+4)^2-0.075)((x-2)^2+(y+8)^2-0.075)=0 [-20, 20, -10, 10]}

Now, we can draw a straight line through the two points to graph the line:

graph{(y+2x+4)(x^2+(y+4)^2-0.075)((x-2)^2+(y+8)^2-0.075)=0 [-20, 20, -10, 10]}